¡Oferta!

Programación de aplicaciones estadísticas en R

30,00  30,00 

Programación de aplicaciones estadísticas en R. aprender a programar en Java a su propio ritmo. Viene completa con archivos de trabajo y un Certificado de Finalización verificable.

MATRICÚLATE

Descripción

No te pierdas este fabuloso curso online llamado Programación de aplicaciones estadísticas en R. Es 100% online y comenzarás justo en el momento de matricularte. Tú serás el que marques tu propio ritmo de aprendizaje.

Breve descripción del curso llamado Programación de aplicaciones estadísticas en R

aprender a programar en Java a su propio ritmo. Viene completa con archivos de trabajo y un Certificado de Finalización verificable.

El profesor de este fabuloso curso 100% online es Geoffrey Hubona, Ph.D., un auténtico experto en la materia, y con el que aprenderás todo lo necesario para ser más competitivo. El curso se ofrece en Inglés.

Descripción completa del curso llamado Programación de aplicaciones estadísticas en R

Course Description Programming Statistical Applications in R is an introductory course teaching the basics of programming mathematical and statistical applications using the R language. The course makes extensive use of the Introduction to Scientific Programming and Simulation using R (spuRs) package from the Comprehensive R Archive Network (CRAN). The course is a scientific-programming foundations course and is a useful complement and precursor to the more simulation-application oriented R Programming for Simulation and Monte-Carlo Methods Udemy course. The two courses were originally developed as a two-course sequence (although they do share some exercises in common). Together, both courses provide a powerful set of unique and useful instruction about how to create your own mathematical and statistical functions and applications using R software.Programming Statistical Applications in R is a “hands-on” course that comprehensively teaches fundamental R programming skills, concepts and techniques useful for developing statistical applications with R software. The course also uses dozens of “real-world” scientific function examples. It is not necessary for a student to be familiar with R, nor is it necessary to be knowledgeable about programming in general, to successfully complete this course. This course is ‘self-contained’ and includes all materials, slides, exercises (and solutions); in fact, everything that is seen in the course video lessons is included in zipped, downloadable materials files. The course is a great instructional resource for anyone interested in refining their skills and knowledge about statistical programming using the R language. It would be useful for practicing quantitative analysis professionals, and for undergraduate and graduate students seeking new job-related skills and/or skills applicable to the analysis of research data.The course begins with basic instruction about installing and using the R console and the RStudio application and provides necessary instruction for creating and executing R scripts and R functions. Basic R data structures are explained, followed by instruction on data input and output and on basic R programming techniques and control structures. Detailed examples of creating new statistical R functions, and of using existing statistical R functions, are presented. Boostrap and Jackknife resampling methods are explained in detail, as are methods and techniques for estimating inference and for constructing confidence intervals, as well as of performing N-fold cross validation assessments of competing statistical models. Finally, detailed instructions and examples for debugging and for making R programs run more efficiently are demonstrated.

Información adicional

Profesor

Geoffrey Hubona, Ph.D.

Lecciones

88

Duración

11

Nivel

Todos

Idioma

Inglés

Incluye

Acceso de por vida <br/> Devolución a los 30 días garantizada <br/> Disponible en iOS y Android <br/> Certificado de finalización

Valoraciones

No hay valoraciones aún.

Sé el primero en valorar “Programación de aplicaciones estadísticas en R”

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

*